3,187 research outputs found

    Threshold Corrections in the Exceptional Supersymmetric Standard Model

    Get PDF
    We calculate threshold corrections to the running gauge and Yukawa couplings in the Exceptional Supersymmetric Standard Model (E6SSM) and analyse the more precise and reliable mass spectra in a constrained model (CE6SSM). Full expressions for the corrections are provided and the implementation into a spectrum generator is described. We find a dramatic reduction in the matching scale dependency of the masses of many states and observe a significant adjustment of the correlation of low-scale physical masses and high-scale parameters. Still, in substantial regions of parameter space the mass of the lightest Higgs is compatible with the new boson discovered at the LHC and the model satisfies limits from collider searches for squark, gluinos and Z' bosons. We study the implications for gauge coupling unification from a new dependency of the spectrum on so-called survival Higgs fields which cannot be addressed without the inclusion of the threshold corrections.Comment: 59 pages, 25 figures, v2 fixed typo and rephrased parts of section 5.3.1, v2 accepted for publication in Physical Review

    The role of center vortices in Gribov's confinement scenario

    Full text link
    The connection of Gribov's confinement scenario in Coulomb gauge with the center vortex picture of confinement is investigated. For this purpose we assume a vacuum wave functional which models the infrared properties of the theory and in particular shows strict confinement, i.e. an area law of the Wilson loop. We isolate the center vortex content of this wave functional by standard lattice methods and investigate their contributions to various static propagators of the Hamilton approach to Yang-Mills theory in Coulomb gauge. We find that the infrared properties of these quantities, in particular the infrared divergence of the ghost form factor, are dominated by center vortices.Comment: 18 pages, 5 figure

    Hadley cell dynamics in a virtually dry Snowball Earth atmosphere

    No full text
    We study the initiation of a Marinoan Snowball Earth (~635 million years before present) with the state-of-the-art atmosphere-ocean general circulation model ECHAM5/MPI-OM. This is the most sophisticated model ever applied to Snowball initiation. A comparison with a pre-industrial control climate shows that the change of surface boundary conditions from present-day to Marinoan, including a shift of continents to low latitudes, induces a global-mean cooling of 4.6 K. Two thirds of this cooling can be attributed to increased planetary albedo, the remaining one third to a weaker greenhouse effect. The Marinoan Snowball Earth bifurcation point for pre-industrial atmospheric carbon dioxide is between 95.5 and 96% of the present-day total solar irradiance (TSI), whereas a previous study with the same model found that it was between 91 and 94% for present-day surface boundary conditions. A Snowball Earth for TSI set to its Marinoan value (94% of the present-day TSI) is prevented by doubling carbon dioxide with respect to its pre-industrial level. A zero-dimensional energy balance model is used to predict the Snowball Earth bifurcation point from only the equilibrium global-mean ocean potential temperature for present-day TSI. We do not find stable states with sea-ice cover above 55%, and land conditions are such that glaciers could not grow with sea-ice cover of 55%. Therefore, none of our simulations qualifies as a "slushball" solution. While uncertainties in important processes and parameters such as clouds and sea-ice albedo suggest that the Snowball Earth bifurcation point differs between climate models, our results contradict previous findings that Snowball Earth initiation would require much stronger forcings

    Spiral Growth and Step Edge Barriers

    Get PDF
    The growth of spiral mounds containing a screw dislocation is compared to the growth of wedding cakes by two-dimensional nucleation. Using phase field simulations and homoepitaxial growth experiments on the Pt(111) surface we show that both structures attain the same characteristic large scale shape when a significant step edge barrier suppresses interlayer transport. The higher vertical growth rate observed for the spiral mounds on Pt(111) reflects the different incorporation mechanisms for atoms in the top region and can be formally represented by an enhanced apparent step edge barrier.Comment: 11 pages, 4 figures, partly in colo

    Integral representation of the linear Boltzmann operator for granular gas dynamics with applications

    Get PDF
    We investigate the properties of the collision operator associated to the linear Boltzmann equation for dissipative hard-spheres arising in granular gas dynamics. We establish that, as in the case of non-dissipative interactions, the gain collision operator is an integral operator whose kernel is made explicit. One deduces from this result a complete picture of the spectrum of the collision operator in an Hilbert space setting, generalizing results from T. Carleman to granular gases. In the same way, we obtain from this integral representation of the gain operator that the semigroup in L^1(\R \times \R,\d \x \otimes \d\v) associated to the linear Boltzmann equation for dissipative hard spheres is honest generalizing known results from the first author.Comment: 19 pages, to appear in Journal of Statistical Physic

    Spin-Peierls instability in a quantum spin chain with Dzyaloshinskii-Moriya interaction

    Full text link
    We analysed the ground state energy of some dimerized spin-1/2 transverse XX and Heisenberg chains with Dzyaloshinskii-Moriya (DM) interaction to study the influence of the latter interaction on the spin-Peierls instability. We found that DM interaction may act either in favour of the dimerization or against it. The actual result depends on the dependence of DM interaction on the distortion amplitude in comparison with such dependence for the isotropic exchange interaction.Comment: 12 pages, latex, 3 figure
    corecore